Comparison of dose calculation methods for brachytherapy of intraocular tumors.

نویسندگان

  • Mark J Rivard
  • Sou-Tung Chiu-Tsao
  • Paul T Finger
  • Ali S Meigooni
  • Christopher S Melhus
  • Firas Mourtada
  • Mary E Napolitano
  • D W O Rogers
  • Rowan M Thomson
  • Ravinder Nath
چکیده

PURPOSE To investigate dosimetric differences among several clinical treatment planning systems (TPS) and Monte Carlo (MC) codes for brachytherapy of intraocular tumors using 125I or 103Pd plaques, and to evaluate the impact on the prescription dose of the adoption of MC codes and certain versions of a TPS (Plaque Simulator with optional modules). METHODS Three clinical brachytherapy TPS capable of intraocular brachytherapy treatment planning and two MC codes were compared. The TPS investigated were Pinnacle v8.0dp1, BrachyVision v8.1, and Plaque Simulator v5.3.9, all of which use the AAPM TG-43 formalism in water. The Plaque Simulator software can also handle some correction factors from MC simulations. The MC codes used are MCNP5 v1.40 and BrachyDose/EGSnrc. Using these TPS and MC codes, three types of calculations were performed: homogeneous medium with point sources (for the TPS only, using the 1D TG-43 dose calculation formalism); homogeneous medium with line sources (TPS with 2D TG-43 dose calculation formalism and MC codes); and plaque heterogeneity-corrected line sources (Plaque Simulator with modified 2D TG-43 dose calculation formalism and MC codes). Comparisons were made of doses calculated at points-of-interest on the plaque central-axis and at off-axis points of clinical interest within a standardized model of the right eye. RESULTS For the homogeneous water medium case, agreement was within approximately 2% for the point- and line-source models when comparing between TPS and between TPS and MC codes, respectively. For the heterogeneous medium case, dose differences (as calculated using the MC codes and Plaque Simulator) differ by up to 37% on the central-axis in comparison to the homogeneous water calculations. A prescription dose of 85 Gy at 5 mm depth based on calculations in a homogeneous medium delivers 76 Gy and 67 Gy for specific 125I and 103Pd sources, respectively, when accounting for COMS-plaque heterogeneities. For off-axis points-of-interest, dose differences approached factors of 7 and 12 at some positions for 125I and 103Pd, respectively. There was good agreement (approximately 3%) among MC codes and Plaque Simulator results when appropriate parameters calculated using MC codes were input into Plaque Simulator. Plaque Simulator and MC users are perhaps at risk of overdosing patients up to 20% if heterogeneity corrections are used and the prescribed dose is not modified appropriately. CONCLUSIONS Agreement within 2% was observed among conventional brachytherapy TPS and MC codes for intraocular brachytherapy dose calculations in a homogeneous water environment. In general, the magnitude of dose errors incurred by ignoring the effect of the plaque backing and Silastic insert (i.e., by using the TG-43 approach) increased with distance from the plaque's central-axis. Considering the presence of material heterogeneities in a typical eye plaque, the best method in this study for dose calculations is a verified MC simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verification of delivered dose to the Lips carcinoma tumors with HDR brachytherapy sources: 192Ir and 60CO in an exclusive plexiglass Phantom.

Introduction: Brachytherapy, especially using manually after loaded Iridium-192 and Cobalt-60, can be applied as a sole treatment, as a treatment complementary to surgery, and as a local boost in combination with EBRT. The use of HDR brachytherapy catheters incorporated in removable dental molds allows repeated, highly reproducible, fractionated outpatient brachytherapy of supe...

متن کامل

Comparison of dosimetry parameters of two commercially available Iodine brachytherapy seeds using Monte Carlo calculations

Background: Iodine brachytherapy sources with low photon energies have been widely used in treating cancerous tumors. Dosimetric parameters of brachytherapy sources should be determined according to AAPM TG-43U1 recommendations before clinical use. Monte Carlo codes are reliable tools in calculation of these parameters for brachytherapy sources. Materials and Methods: Dosimetric param...

متن کامل

A Comparison of the Dosimetric Parameters of Cs-137 Brachytherapy Source in Different Tissues with Water Using Monte Carlo Simulation

Introduction After the publication of Task Group number 43 dose calculation formalism by the American Association of Physicists in Medicine (AAPM), this method has been known as the most common dose calculation method in brachytherapy treatment planning. In this formalism, the water phantom is introduced as the reference dosimetry phantom, while the attenuation coefficient of the sources in the...

متن کامل

برآورد پارامترهای دوزیمتری پلاک های چشمی 106Ru/106Rh در براکی تراپی تومورهای ملانومای کوچک Uvea با استفاده از روش شبیه سازی مونت کارلو

Background and purpose: Concave eye applicators of Ru-106, a beta emitter source, have a lot of use in brachytherapy of intraocular tumors. This has led to the need of knowing the exact dose distribution caused by beta radiation to the tumor and its normal surrounding tissue. The purpose of this study was the 3D calculation of dose distribution for three Ru-106 plaques: CCA, CCB, and CGD in a h...

متن کامل

Comparison and Evaluation of the Effects of Rib and Lung Inhomogeneities on Lung Dose in Breast Brachytherapy using a Treatment Planning System and the MCNPX Code

Introduction: This study investigates to what extent the computed dose received by lung tissue in a commercially available treatment planning system (TPS) for 192Ir high-dose-rate breast brachytherapy is accurate in view of tissue inhomogeneities and presence of ribs. Materials and Methods: A CT scan of the breast was used to construct a patient-equivalent phantom in the clinical treatment plan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 2011